Hand in no. 2, 4, 5 and 6 by November 7.

Assignment 8

1. Let f be continuously differentiable on $[a, b]$. Show that it has a differentiable inverse if and only if its derivative is not equal to 0 at every point. This is 2060 stuff.
2. Consider the function

$$
f(x)=\frac{1}{2} x+x^{2} \sin \frac{1}{x}, \quad x \neq 0
$$

and set $f(0)=0$. Show that f is differentiable at 0 with $f^{\prime}(0)=1 / 2$ but it has no local inverse at 0 . Does it contradict the Inverse Function Theorem?
3. Study the map on \mathbb{R}^{2} given $(x, y) \mapsto\left(x^{2}-y^{2}, 2 x y\right)$. Show that it is local invertible everywhere except at the origin. Does its inverse exist globally?
4. Consider the mapping from \mathbb{R}^{2} to itself given by $f(x, y)=x-x^{2}, g(x, y)=y+x y$. Show that it has a local inverse at $(0,0)$. And then write down the inverse map so that its domain can be described explicitly.
5. Let F be a continuously differentiable map from the open $U \subset \mathbb{R}^{n}$ to \mathbb{R}^{n} whose Jacobian determinant is non-vanishing everywhere. Prove that it maps every open set in U to an open set, that is, F is an open map. Does its inverse $F^{-1}: F(U) \rightarrow U$ always exist?
6. Consider the function

$$
h(x, y)=\left(x-y^{2}\right)\left(x-3 y^{2}\right), \quad(x, y) \in \mathbb{R}^{2}
$$

Show that the set $\{(x, y): h(x, y)=0\}$ cannot be expressed as a local graph of a C^{1} function over the x or y-axis near the origin. Explain why the Implicit Function Theorem is not applicable.
7. Consider a real polynomial $p(x, \mathbf{a})=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ as a function of x and the coefficients. A point x_{0} is a simple root of p if $p\left(x_{0}, \mathbf{a}\right)=0$ and $p^{\prime}\left(x_{0}, \mathbf{a}\right) \neq 0$ where $\mathbf{a}=\left(a_{0}, a_{1}, \cdots, a_{n}\right)$. Let x_{0} be a simple of $p\left(\cdot, \mathbf{a}_{0}\right)$. Show that there is a smooth function φ defined in an open set in \mathbb{R}^{n+1} containing \mathbf{a}_{0} such that $x=\varphi(\mathbf{a})$ is a simple root for $p(\cdot, \mathbf{a})=0$. What happens when the root is simple.

